Tra Cứu

Toán tìm x lớp 3

Chuyên đề giải Toán tìm X lớp 3

Lưu ý cần nhớ khi giải toán tìm X lớp 3

Để giải được các bài toán tìm X thì cần các thành phần và kết quả của:

  • Phép cộng: Số hạng + số hạng = tổng
  • Phép trừ: số bị trừ – số trừ = hiệu
  • Phép nhân: thừa số x thừa số = tích
  • Phép chia: số bị chia : số chia = thương.

Cách tìm thành phần chưa biết của phép tính: như Để (tìm số hạng; tìm số bị trừ ;tìm số từ; tìm số chia ) ta làm thế nào?

Nêu lại cách tính giá trị của biểu thức có dấu ngoặc đơn( hoặc không có dấu ngoặc đơn)

Bạn đang xem: Toán tìm x lớp 3

Sau đó tuỳ theo từng dạng bài tìm X mà chúng ta hướng dẫn học sinh đi tìm ra cách giải nhanh và đúng.

Các dạng bài tìm X thường gặp ở lớp 3

1. Dạng 1 (Dạng cơ bản)

Các bài tìm X mà vế trái là tổng, hiệu, tích, thương của một số với 1 chữ, còn vế phải là 1 số.

Ví dụ: Tìm X:

549 + X = 1326

X = 1326 – 549

X = 777

X – 636 = 5618

X = 5618 + 636

X = 6254

2. Dạng 2 (Dạng nâng cao)

Những bài tìm X mà vế trái là tổng, hiệu, tích, thương của một số với 1 chữ , vế phải là một tổng, hiệu, tích, thương của hai số.

Ví dụ: Tìm X

X : 6 = 45 : 5

X : 6 = 9

X = 9 x 6

X = 54

3. Dạng 3

Các bài tìm X mà vế trái là biểu thức có 2 phép tính không có dấu ngoặc đơn, vế phải là một số.

Ví dụ: Tìm X:

736 – X : 3 = 106

X : 3 = 736 – 106 (dạng 2)

X : 3 = 630 (dạng 1)

X = 630 x 3

X = 1890

4. Dạng 4:

Các bài tìm X mà vế trái là biểu thức có 2 phép tính có dấu ngoặc đơn, vế phải là một số.

Ví dụ: Tìm X

(3586 – X) : 7 = 168

(3586 – X) = 168 x 7

3586 – X = 1176

X = 3586 – 1176

X = 2410

5. Dạng 5:

Các bài tìm X mà vế trái là biểu thức có chứa 2 phép tính không có dấu ngoặc đơn, còn vế phải là một tổng, hiệu, tích, thương của hai số

Ví dụ: Tìm X

125 x 4 – X = 43 + 26

125 x 4 – X = 69

500 – X = 69

X = 500 – 69

X = 431

6. Dạng 6:

Các bài tìm X mà vế trái là biểu thức có chứa 2 phép tính có dấu ngoặc đơn , còn vế phải là một tổng, hiệu ,tích, thương của hai số

Ví dụ: Tìm X

(X – 10) x 5 = 100 – 80

(X – 10) x 5 = 20 (dạng 5)

(X – 10) = 20 : 5

X – 10 = 4

X = 4 + 10

X = 14

Các bài tập thực hành

1. X x 5 + 122 + 236 = 633

2. 320 + 3 x X = 620

3. 357 : X = 5 dư 7

4. X : 4 = 1234 dư 3

5. 120 – (X x 3) = 30 x 3

6. 357 : (X + 5) = 5 dư 7

7. 65 : x = 21 dư 2

8. 64 : X = 9 dư 1

9. (X + 3) : 6 = 5 + 2

10. X x 8 – 22 = 13 x 2

11. 720 : (X x 2 + X x 3) = 2 x 3

12. X+ 13 + 6 x X = 62

13. 7 x (X – 11) – 6 = 757

14. X + (X + 5) x 3 = 75

15. 4

16. 36 > X x 4 > 4 x 1

17. X + 27 + 7 x X = 187

18. X + 18 + 8 x X = 99

19. (7 + X) x 4 + X = 108

20. (X + 15) : 3 = 3 x 8

21. (X : 12 ) x 7 + 8 = 36

22. X : 4 x 7 = 252

23. (1+ x) + (2 + x) + (3 + x) + (4 + x ) + (5 + x) = 10 x 5

24. (8 x 18 – 5 x 18 – 18 x 3) x X + 2 x X = 8 x 7 + 24

6 quy tắc tìm x lớp 3

+) Phép cộng: Số hạng + số hạng = tổng.

Số hạng chưa biết = tổng – số hạng đã biết

+) Phép trừ: Số bị trừ – số trừ = hiệu.

Số trừ = số bị trừ – hiệu

Số bị trừ = số trừ + hiệu

+) Phép nhân: Thừa số x thừa số = tích

Thừa số chưa biết  = tích : thừa số đã biết

+) Phép chia: Số bị chia : số chia = thương

Số bị chia = thương x số chia

Số chia = Số bị chia : thương

+ Nhân chia trước, cộng trừ sau.

+ Nếu chỉ có cộng trừ, hoặc chỉ có nhân chia thì thực hiện từ trái qua phải.

Các dạng toán tìm x lớp 3

Dạng 1: Tìm x trong tổng, hiệu, tích, thương của số cụ thể ở vế trái – số nguyên ở vế phải

Phương pháp:

– Bước 1: Nhớ lại quy tắc, thứ tự của phép cộng, trừ, nhân, chia

– Bước 2: triển khai tính toán

Bài tập toán lớp 3 tìm x biết

Ví dụ 1:

a) 1264 + X = 9825
X = 9825 – 1264
X = 8561
b) X + 3907 = 4015
X = 4015 – 3907
X = 108
c) 1521 + X = 2024
X = 2024 – 1521
X = 503
d) 7134 – X = 1314
X = 7134 – 1314
X = 5820
e) X – 2006 = 1957
X = 1957 + 2006
X = 3963

Ví dụ 2:

a) X x 4 = 252
X = 252 : 4
X = 63
b) 6 x X = 558
X = 558 : 6
X = 93
c) X : 7 = 103
X = 103 x 7
X = 721
d) 256 : X = 8
X = 256 : 8
X = 32

Dạng 2: Bài toán có tổng, hiệu, tích, thương của một số cụ thể ở vế trái – biểu thức ở vế phải

Phương pháp:

– Bước 1: Nhớ lại quy tắc thực hiện phép tính nhân, chia, cộng, trừ

– Bước 2: Thực hiện phép tính giá trị biểu thức vế phải trước, sau đó mới thực hiện bên trái

– Bước 3: Trình bày, tính toán

Bài tập toán lớp 3 tìm x biết

Ví dụ 1:

a) X : 5 = 800 : 4
X : 5 = 200
X = 200 x 5
X = 1000
b) X : 7 = 9 x 5
X : 7 = 45
X = 45 x 7
X = 315
c) X x 6 = 240 : 2
X x 6 = 120
X = 120 : 6
X = 20
d) 8 x X = 128 x 38 x X = 384
X = 384 : 8
X = 48
e) X : 4 = 28 + 7
X : 4 = 35
X = 35 x 4
X = 140
g) X x 9 = 250 – 25
X x 9 = 225
X = 225 : 9
X = 25

Ví dụ 2:

a) X + 5 = 440 : 8
X + 5 = 55
X = 55 – 5X = 50
b) 19 + X = 384 : 8
19 + X = 48
X = 48 – 19
X = 29
c) 25 – X = 120 : 6
25 – X = 20
X = 25 – 20
X = 5
d) X – 35 = 24 x 5
X – 35 = 120
X = 120 + 35
X = 155

Dạng 3: Tìm X có vế trái là biểu thức hai phép tính và vế phải là một số nguyên

Phương pháp:

– Bước 1: Nhớ lại kiến thức phép cộng trừ nhân chia

– Bước 2: Thực hiện phép cộng, trừ trước rồi mới thực hiện phép chia nhân sau

– Bước 3: Khai triển và tính toán

Bài tập toán lớp 3 tìm x biết

Ví dụ 1:

a) 403 – X : 2 = 30
X : 2 = 403 – 30
X : 2 = 373
X = 373 x 2
X = 746
b) 55 + X : 3 = 100
X : 3 = 100 – 55
X : 3 = 45
X = 45 x 3
X = 135
c) 75 + X x 5 = 100
X x 5 = 100 – 75
X x 5 = 25
X = 25 : 5
X = 5
d) 245 – X x 7 = 70
X x 7 = 245 – 70
X x 7 = 175
X = 175 : 7
X = 25

Dạng 4: Tìm X có vế trái là một biểu thức hai phép tính – vế phải là tổng hiệu tích thương của hai số

Phương pháp:

– Bước 1: Nhớ quy tắc tính toán phép cộng trừ nhân chia

– Bước 2: Tính toán giá trị biểu thức vế phải trước, sau đó rồi tính vế trái. Ở vế trái ta cần tính toán trước đối với phép cộng trừ

– Bước 3: Khai triển và tính toán

Bài tập toán lớp 3 tìm x biết

Ví dụ 1:

a) 375 – X : 2 = 500 : 2

375 – X : 2 = 250

X : 2 = 375 – 250

X : 2 = 125

X = 125 x 2

X = 250

b) 32 + X : 3 = 15 x 5

32 + X : 3 = 75

X : 3 = 75 – 32

X : 3 = 43

X = 43 x 3

X = 129

c) 56 – X : 5 = 5 x 6

56 – X : 5 = 30

X : 5 = 56 – 30

X : 5 = 26

X = 26 x 5

X = 130

d) 45 + X : 8 = 225 : 3

45 + X : 8 = 75

X : 8 = 75 – 45

X : 8 = 30

X = 30 x 8

X = 240

Ví dụ 2:

a) 125 – X x 5 = 5 + 45

125 – X x 5 = 50

X x 5 = 125 – 50

X x 5 = 75

X = 75 : 5

X = 15

b) 350 + X x 8 = 500 + 50

350 + X x 8 = 550

X x 8 = 550 – 350

X x 8 = 200

X = 200 : 8

X = 25

c) 135 – X x 3 = 5 x 6

135 – X x 3 = 30

X x 3 = 135 – 30

X x 3 = 105

X = 105 : 3

X = 35

d) 153 – X x 9 = 252 : 2

153 – X x 9 = 126

X x 9 = 153 – 126

X x 9 = 27

X = 27 : 9

X = 3

Dạng 5: Tìm x có vế trái là một biểu thức có dấu ngoặc đơn – vế phải là tổng, hiệu, tích, thương của hai số

Phương pháp:

– Bước 1: Nhớ lại quy tắc đối với phép cộng trừ nhân chia

– Bước 2: Tính toán giá trị biểu thức vế phải trước, sau đó mới thực hiện các phép tính bên vế trái. ở vế trái thì thực hiện ngoài ngoặc trước trong ngoặc sau

 Bài tập tìm x lớp 3

Ví dụ 1:

a) (X – 3) : 5 = 34

(X – 3) = 34 x 5

X – 3 = 170

X = 170 + 3

X = 173

b) (X + 23) : 8 = 22

X + 23 = 22 x 8

X + 23 = 176

X = 176 – 23

X = 153

c) (45 – X) : 3 = 15

45 – X = 15 x 3

45 – X = 45

X = 45 – 45

X = 0

d) (75 + X) : 4 = 56

75 + X = 56 x 4

75 + x = 224

X = 224 – 75

X = 149

Ví dụ 2:

a) (X – 5) x 6 = 24 x 2

(X – 5) x 6 = 48

(X – 5) = 48 : 6

X – 5 = 8

X = 8 + 5

X = 13

b) (47 – X) x 4 = 248 : 2

(47 – X) x 4 = 124

47 – X = 124 : 4

47 – X = 31

X = 47 – 31

X = 16

c) (X + 27) x 7 = 300 – 48

(X + 27) x 7 = 252

X + 27 = 252 : 7

X + 27 = 36

X = 36 – 27

X = 9

d) (13 + X) x 9 = 213 + 165

(13 + X) x 9 = 378

13 + X = 378 : 9

13 + X = 42

X = 42 – 13

X = 29

Các bài tập thực hành cơ bản và các bài tìm x lớp 3 nâng cao

1. X x 5 + 122 + 236 = 633

2. 320 + 3 x X = 620

3. 357 : X = 5 dư 7

4. X : 4 = 1234 dư 3

5. 120 – (X x 3) = 30 x 3

6. 357 : (X + 5) = 5 dư 7

7. 65 : x = 21 dư 2

8. 64 : X = 9 dư 1

9. (X + 3) : 6 = 5 + 2

10. X x 8 – 22 = 13 x 2

11. 720 : (X x 2 + X x 3) = 2 x 3

12. X+ 13 + 6 x X = 62

13. 7 x (X – 11) – 6 = 757

14. X + (X + 5) x 3 = 75

15. 4

16. 36 > X x 4 > 4 x 1

17. X + 27 + 7 x X = 187

18. X + 18 + 8 x X = 99

19. (7 + X) x 4 + X = 108

20. (X + 15) : 3 = 3 x 8

21. (X : 12 ) x 7 + 8 = 36

22. X : 4 x 7 = 252

23. (1+ x) + (2 + x) + (3 + x) + (4 + x ) + (5 + x) = 10 x 5

24. (8 x 18 – 5 x 18 – 18 x 3) x X + 2 x X = 8 x 7 + 24

1. Dạng toán tìm X cơ bản

Để làm dạng toán tìm X cơ bản thì chúng ta cần nhớ là các kiến thức (về số trừ, số bị trừ, số hạng, thừa số, số bị chia, số chia) đã học.

Cụ thể:

– Số chia = Số bị chia : Thương

– Số bị chia = Số chia x Thương

– Thừa số = Tích số : Thừa số đã biết

– Số trừ = Số bị trừ – Hiệu số

– Số hạng = Tổng số – Số hạng đã biết

– Số bị trừ = Hiệu số + Số trừ

Hướng dẫn: xem các ví dụ dưới đây.

Ví dụ 1:

Ví dụ 3:

Ví dụ 5:

Dạng toán tìm X nâng cao thứ nhất

Khi về trái là một biểu thức, có 2 phép tính. Vế phải là một số

Để làm được dạng toán này chúng ta cần biến đổi biểu thức về dạng tìm X cơ bản ở trên.

Cách làm: Xem các ví dụ dưới đây.

Ví dụ 1:

Ví dụ 3:

Dạng toán tìm X nâng cao thứ hai

Khi về trái là một biểu thức, có 2 phép tính. Vế phải là biểu thức

Cách làm: Xem các ví dụ dưới đây.

Ví dụ 1:

Dạng toán tìm X nâng cao thứ ba

Vế trái là 1 biểu thức chứa ngoặc đơn, có 2 phép tính. Vế phải là 1 số.

Cách làm: Xem các ví dụ dưới đây.

Ví dụ 1:

Ví dụ 3:

Dạng toán tìm X nâng cao thứ tư

Vế trái là 1 biểu thức chứa ngoặc đơn, có 2 phép tính. Vế phải là một biểu thức

Cách làm: Xem các ví dụ dưới đây.

Ví dụ 1:

Gợi ý: Đáp án X = 32.

Các bài tập thực hành cơ bản

1. X x 5 + 122 + 236 = 633

2. 320 + 3 x X = 620

3. 357 : X = 5 dư 7

4. X : 4 = 1234 dư 3

5. 120 – (X x 3) = 30 x 3

6. 357 : (X + 5) = 5 dư 7

7. 65 : x = 21 dư 2

8. 64 : X = 9 dư 1

9. (X + 3) : 6 = 5 + 2

10. X x 8 – 22 = 13 x 2

11. 720 : (X x 2 + X x 3) = 2 x 3

12. X+ 13 + 6 x X = 62

13. 7 x (X – 11) – 6 = 757

14. X + (X + 5) x 3 = 75

15. 4

16. 36 > X x 4 > 4 x 1

17. X + 27 + 7 x X = 187

18. X + 18 + 8 x X = 99

19. (7 + X) x 4 + X = 108

20. (X + 15) : 3 = 3 x 8

21. (X : 12 ) x 7 + 8 = 36

22. X : 4 x 7 = 252

23. (1+ x) + (2 + x) + (3 + x) + (4 + x ) + (5 + x) = 10 x 5

24. (8 x 18 – 5 x 18 – 18 x 3) x X + 2 x X = 8 x 7 + 24

Bài tập tự luyện

Bài giải

X=29

Đăng bởi: thcs Hồng Thái

Chuyên mục: Giáo dục

Bản quyền bài viết thuộc Trường THCS Hồng Thái Hải Phòng. Mọi hành vi sao chép đều là gian lận!

Nguồn chia sẻ: Trường thcs Hồng Thái (thcshongthaiad.edu.vn)

THCS Hồng Thái

“Đừng xấu hổ khi không biết, chỉ xấu hổ khi không học.” Khuyết Danh
Back to top button