Giải bài 136, 137, 138, 139 trang 97 SBT Toán 8 tập 1
- Mai Hồng Vũ là ai ngoài đời? Mai Hồng Vũ giống Vũ Nhôm hay Đường Nhuệ?
- Cát cứ là gì? – Trường THCS Hồng Thái Hải Phòng
- Hãy xác định chỉ một ý trả lời đúng cho các câu hỏi từ 1 đến 12 dưới đây | SBT Lịch sử 10 kết nối tri thức
- Giải bài 73, 74, 75, 76, 77, 78 trang 105 SGK toán 8 tập 1
- 8. Em hãy tranh biện với các bạn trong nhóm hoặc trong lớp về một số quan điểm sống dưới đây: | SBT hoạt động trải nghiệm 10 kết nối
Giải bài tập trang 96, 97, 98 bài 11 hình thoi Sách bài tập (SBT) Toán 8 tập 1. Câu 136: Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK…
Câu 136 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Bạn đang xem: Giải bài 136, 137, 138, 139 trang 97 SBT Toán 8 tập 1
a. Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK
b. Hình bình hành ABCD có hai đường cao AH , AK bằng nhau. Chứng minh rằng ABCD là hình thoi.
Bạn đang xem: Giải bài 136, 137, 138, 139 trang 97 SBT Toán 8 tập 1
Giải:
a. Xét hai tam giác vuông AHB và AKD:
\(\widehat {AHB} = \widehat {AKD} = {90^0}\)
AB = AD (gt)
\(\widehat B = \widehat D\) (tính chất hình thoi)
Do đó: ∆ AHB = ∆ AKD (cạnh huyền, góc nhọn)
⇒ AH = AK
b. Xét hai tam giác vuông AHC và AKC:
\(\widehat {AHC} = \widehat {AKC} = {90^0}\)
AH = AK (gt)
AC cạnh huyền chung
Do đó: ∆ AHC = ∆ AKC (cạnh huyền, góc nhọn)
\( \Rightarrow \widehat {ACH} = \widehat {ACK}\) hay \(\widehat {ACB} = \widehat {ACD}\)
⇒ CA là tia phân giác \(\widehat {BCD}\)
Hình bình hành ABCD có đường chéo CA là tia phân giác nên là hình thoi.
Câu 137 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Hình thoi ABCD có\(\widehat A = {60^0}\). Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì ? Vì sao ?
Giải:
Xét hai tam giác vuông BEA và BFC:
\(\widehat {BEA} = \widehat {BFC} = {90^0}\)
Xem thêm : Bài văn tả cây bút máy lớp 5
\(\widehat A = \widehat C\) (tính chất hình thoi)
BA = BC (gt)
Do đó: ∆ BEA = ∆ BFC (cạnh huyền, góc nhọn)
⇒ BE = BF
⇒ ∆ BEF cân tại B
\( \Rightarrow {\widehat B_1} = {\widehat B_2}\)
⇒ Trong tam giác vuông BEA ta có:
\(\eqalign{ & \Rightarrow \widehat A + {\widehat B_1} = {90^0} \Rightarrow {\widehat B_1} = {90^0} – \widehat A = {90^0} – {60^0} = {30^0} \cr & \Rightarrow {\widehat B_2} = {\widehat B_1} = {30^0} \cr} \)
\( \Rightarrow \widehat A + \widehat {ABC} = {180^0}\) (hai góc trong cùng phía bù nhau)
\(\eqalign{ & \Rightarrow \widehat {ABC} – {180^0} – \widehat A = {180^0} – {60^0} = {120^0} \cr & \Rightarrow \widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3} \cr & \Rightarrow {\widehat B_3} = \widehat {ABC} – \left( {{{\widehat B}_1} + {{\widehat B}_2}} \right)\cr & = {120^0} – \left( {{{30}^0} + {{30}^0}} \right) = {60^0} \cr} \)
Vậy ∆ BEF đều.
Câu 138 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao?
Giải:
Ta có: AB // CD (gt)
OE ⊥ AB (gt)
⇒ OE ⊥ CD
OG ⊥ CD (gt)
Suy ra: OE trùng với OG nên ba điểm O, E, G thẳng hàng.
BC // AD (gt)
OF ⊥ BC (gt)
⇒ OF ⊥ AD
OH ⊥ AD (gt)
Suy ra : OF trùng với OH nên ba điểm O, H, F thẳng hàng
AC và BD là đường phân giác các góc của hình thoi
OE = OF (tính chất tia phân giác) (1)
Xem thêm : 200+ Mẫu chữ ký tên Thanh đẹp, hợp phong thủy | Chữ ký tên Thành đẹp nhất
OE = OH (tính chất tia phân giác) (2)
OH = OG (tính chất tia phân giác) (3)
Từ (1), (2) và (3) suy ra: OE = OF = OH = OG
Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật.
Câu 139 trang 97 Sách bài tập (SBT) Toán 8 tập 1
Hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi, biết rằng \(\widehat A > \widehat B\)
Giải:
Chứng minh: Chu vi hình thoi bằng 16 (m) nên độ dài một cạnh bằng:
16 : 4 = 4 (cm)
Gọi M là trung điểm của AD.
Trong tam giác vuông AHD ta có HM là trung tuyến thuộc cạnh huyền
HM = AM = \({1 \over 2}\)AD =\({1 \over 2}\).4 = 2 (cm)
⇒ AM = HM = AM = 2 cm
⇒ ∆ AHM đều
\( \Rightarrow \widehat {HAM} = {60^0}$hay $\widehat {HAD} = {60^0}\)
Trong tam giác vuông AHD ta có: \(\widehat {HAD} + \widehat D = {90^0}\)
\( \Rightarrow \widehat D = {90^0} – \widehat {HAD} = {90^0} – {60^0} = {30^0}\)
\( \Rightarrow \widehat B = \widehat D = {30^0}\) (tính chất hình thoi)
\(\widehat B + \widehat C = {180^0}\) (hai góc trong cùng phía bù nhau)
\( \Rightarrow \widehat C = {180^0} – \widehat B = {180^0} – {30^0} = {150^0}\)
\(\widehat A = \widehat C = {150^0}\) (tính chất hình thoi)
Trường thcs Hồng Thái
Đăng bởi: thcs Hồng Thái
Chuyên mục: Giải bài tập
Bản quyền bài viết thuộc Trường THCS Hồng Thái Hải Phòng. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: Trường thcs Hồng Thái (thcshongthaiad.edu.vn)
Nguồn: https://thcshongthaiad.edu.vn
Danh mục: Tra Cứu