Giải bài 55, 56, 57, 58 trang 25 SGK toán 8 tập 1
- Lời bài hát Đố Anh Đoán Được – Bích Phương
- Từ nhiều nghĩa là gì? Cách phân biệt từ nhiều nghĩa và từ đồng nghĩa
- Đề đọc hiểu chuyện cổ nước mình Lâm Thị Mỹ Dạ
- Năm 1982 là năm con gì? Sinh năm 1982 là mệnh gì? Tuổi gì?
- Tám câu thơ cuối miêu tả cảnh vật qua tâm trạng: Cảnh là thực hay hư? Mỗi cảnh vật có nét riêng đồng thời lại có nét chung để diễn tả tâm trạng Kiều. Em hãy phân tích và chứng minh điều đó? | văn 9 tập 1
Giải bài tập trang 25 bài 9 Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp sgk toán 8 tập 1. Câu 55: Tìm x, biết:
Bài 55 trang 25 sgk toán 8 tập 1
Bạn đang xem: Giải bài 55, 56, 57, 58 trang 25 SGK toán 8 tập 1
Tìm \(x\), biết:
a) \({x^3} – {1 \over 4}x = 0\);
Bạn đang xem: Giải bài 55, 56, 57, 58 trang 25 SGK toán 8 tập 1
b) \({(2x – 1)^2} – {(x + 3)^2} = 0\);
c) \({x^2}(x – 3) + 12 – 4x = 0\).
Bài giải:
a)
\(\eqalign{
& {x^3} – {1 \over 4}x = 0 \Rightarrow x\left( {{x^2} – {1 \over 4}} \right) = 0 \cr
& \Rightarrow x\left( {{x^2} – {{\left( {{1 \over 2}} \right)}^2}} \right) = 0 \cr
& \Rightarrow x\left( {x – {1 \over 2}} \right)\left( {x + {1 \over 2}} \right) = 0 \cr
& \Rightarrow \left[ \matrix{
x = 0 \hfill \cr
\left( {x – {1 \over 2}} \right) = 0 \Rightarrow x = {1 \over 2} \hfill \cr
\left( {x + {1 \over 2}} \right) = 0 \Rightarrow x = – {1 \over 2} \hfill \cr} \right. \cr} \)
Vậy \(x=0,x={1\over 2},x=-{1\over2}\)
b)
\(\eqalign{
& {(2x – 1)^2} – {(x + 3)^2} = 0 \cr
& \Rightarrow \left[ {(2x – 1) – (x + 3)} \right].\left[ {(2x – 1) + (x + 3)} \right] = 0 \cr
& \Rightarrow (2x – 1 – x – 3).(2x – 1 + x + 3) = 0 \cr
& \Rightarrow (x – 4).(3x + 2) = 0 \cr
& \Rightarrow \left[ \matrix{
x – 4 = 0 \hfill \cr
3x + 2 = 0 \hfill \cr} \right. \Rightarrow \left[ \matrix{
x = 4 \hfill \cr
x = – {2 \over 3} \hfill \cr} \right. \cr} \)
Vậy \(x=4,x=-{2\over 3}\)
c)
\(\eqalign{
& {x^2}(x – 3) + 12 – 4x = 0 \cr
& \Rightarrow {x^2}(x – 3) – 4(x – 3) = 0 \cr
& \Rightarrow (x – 3)({x^2} – 4) = 0 \cr
& \Rightarrow (x – 3)(x – 2)(x + 2) = 0 \cr
& \Rightarrow \left[ \matrix{
x = 3 \hfill \cr
x = 2 \hfill \cr
x = – 2 \hfill \cr} \right. \cr} \)
Vậy \( x=3,x=2,x=-2\)
Bài 56 trang 25 sgk toán 8 tập 1
Tính nhanh giá trị của đa thức:
Xem thêm : Tả con gà trống lớp 5 hay nhất
a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\);
b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\).
Bài giải:
a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\)
Ta có: \(x^2+ \frac{1}{2}x+ \frac{1}{16} = x^2+ 2 . x . \frac{1}{4} + \left ( \frac{1}{4} \right )^{2}= \left ( x + \frac{1}{4} \right )^{2}\)
Với \(x = 49,75\) ta có: \(\left ( 49,75 + \frac{1}{4} \right )^{2}= (49,75 + 0,25)^2= 50^2= 2500\)
b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\)
Ta có: \({x^2}-{\rm{ }}{y^2}-{\rm{ }}2y{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}({y^2} + {\rm{ }}2y{\rm{ }} + {\rm{ }}1)\)
\(= {\rm{ }}{x^2} – {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\)
\(= {\rm{ }}\left( {x{\rm{ }} – {\rm{ }}y{\rm{ }} – {\rm{ }}1} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right)\)
Với \(x = 93, y = 6\) ta được:
\((93 – 6 – 1)(93 + 6 + 1) = 86 . 100 = 8600 \)
Bài 57 trang 25 sgk toán 8 tập 1
Phân tích các đa thức sau thành nhân tử:
a) x2 – 4x + 3; b) x2 + 5x + 4;
c) x2 – x – 6; d) x4 + 4
(Gợi ý câu d): Thêm và bớt 4x2 vào đa thức đã cho.
Bài giải:
a) x2 – 4x + 3 = x2 – x – 3x + 3
Xem thêm : 99+ Hình ảnh Thứ 7 vui vẻ, Ảnh đẹp chúc ngày thứ bảy
= x(x – 1) – 3(x – 1) = (x -1)(x – 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) – 3(x + 2)
= (x + 2)(x – 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Bài 58 trang 25 sgk toán 8 tập 1
Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.
Bài giải:
Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)
Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.
Trường thcs Hồng Thái
Đăng bởi: thcs Hồng Thái
Chuyên mục: Giải bài tập
Bản quyền bài viết thuộc Trường THCS Hồng Thái Hải Phòng. Mọi hành vi sao chép đều là gian lận!
Nguồn chia sẻ: Trường thcs Hồng Thái (thcshongthaiad.edu.vn)
Nguồn: https://thcshongthaiad.edu.vn
Danh mục: Tra Cứu