Giải câu 2 bài 1: Phương pháp quy nạp toán học | Đại số và giải tích 11 Trang 80 – 83
- Top 10+ mở bài tả con mèo độc đáo để có bài văn hay
- https://thcshongthaiad.edu.vn/con-gai-thi-khoi-b-nen-chon-nganh-gi-cac-nganh-nghe-khoi-b-danh-cho-nu/
- Ý nghĩa chi tiết bát cháo hành của Thị Nở
- Em hãy dùng kiến thức trong bài để trình bày quy trình khiếu nại và giải quyết khiếu nại…? | GDCD 12 (Trang 68 – 82 SGK)
- Công thức Hóa Học lớp 9
Câu 2: Trang 82 – sgk đại số và giải tích 11
Bạn đang xem: Giải câu 2 bài 1: Phương pháp quy nạp toán học | Đại số và giải tích 11 Trang 80 – 83
Chứng minh rằng với n ε N* ta luôn có:
a) n3 + 3n2 + 5n chia hết cho 3;
b) 4n + 15n – 1 chia hết cho 9;
c) n3 + 11n chia hết cho 6.
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, có Sk = (k3 + 3k2 + 5k) \( \vdots\) 3
Xem thêm : Phương pháp đọc 300 bài báo song ngữ Anh Việt hiệu quả
Xét với n = k + 1
Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
mà Sk \( \vdots\) 3, 3(k2 + 3k + 3) \( \vdots\) 3 nên Sk+1 \( \vdots\) 3.
Vậy (n3 + 3n2 + 5n) \( \vdots\) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n – 1
Với n = 1, thì S1 \( \vdots\) 9
Giả sử với n = k ≥ 1 có Sk= 4k + 15k – 1 chia hết cho 9.
Xét với n = k + 1
Sk+1 = 4k + 1 + 15(k + 1) – 1
Xem thêm : Phân tích bài thơ Sóng của Xuân Quỳnh lớp 12 hay nhất (27 Mẫu)
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
mà Sk \( \vdots\) 9 và 9(5k – 2) \( \vdots\) 9 => Sk+1 \( \vdots\) 9
Vậy (4n + 15n – 1) \( \vdots\) 9 với mọi n ε N*
c) Đặt Sn = n3 + 11n
Với n = 1 thì S1 \( \vdots\) 6
Giả sử với n = k ≥ 1 có Sk = k3 + 11k \( \vdots\) 6
Xét với n = k + 1 ta có:
Sk+1 = (k + 1)3 + 11(k + 1) = k3 + 3k + 3k + 1 + 11k + 11
= ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4)
mà Sk \( \vdots\) 6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4) \( \vdots\) 6 => Sk+1 \( \vdots\) 6
Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .
Nguồn: https://thcshongthaiad.edu.vn
Danh mục: Tra Cứu